SOL 6.5 – Exponents, Squares, and Perfect Squares

6.5 The student will investigate and describe concepts of positive exponents and perfect squares.

Understanding the Standard:

- In exponential notation, the base is the number that is multiplied, and the exponent represents the number of times the base is used as a factor. In 8³, 8 is the base and 3 is the exponent.
- A power of a number represents repeated multiplication of the number by itself (e.g., $8^3 = 8 \times 8 \times 8$ and is read "8 to the third power").
- Any real number other than zero raised to the zero power is 1. Zero to the zero power (0) is undefined.
- Perfect squares are the numbers that result from multiplying any whole number by itself

 $(e.g., 36 = 6 \times 6 = 6^2).$

• Perfect squares can be represented geometrically as the areas of squares the length of whose sides are whole numbers (e.g., 1 × 1, 2 × 2, or 3 × 3). This can be modeled with grid paper, tiles, geoboards and virtual manipulatives.

SOL 6.5 – Exponents

The Meaning of Exponents:

- Where repeated addition is multiplication, repeated multiplication is the use of exponents
- The **Base** is the "**Big number**" which is the number to be repeated
- The **Exponent** is the "Floaty number" which tells how many times the **Base** is to be repeated.

Exponential Form	Word Form	Expanded Form	Standard Form
2 ⁴	2 to the fourth power	2×2×2×2	16

How to enter into the Calculator:

Problem: $3^5 \rightarrow \text{Type:} 3 \mathbf{y}^{\mathbf{x}} 5 = \rightarrow \text{Answer:} 243$
Problem: $4^7 \rightarrow$ Type: $4 \mathbf{y}^{\mathbf{x}} 7 = \rightarrow$ Answer: 16,384
Problem: $10^2 \rightarrow$ Type: 10 y ^x 2 = \rightarrow Answer: 100
Problem: $10^3 \rightarrow$ Type: $10 y^x 3 = \rightarrow$ Answer: 1,000
Problem: $10^4 \rightarrow$ Type: $10 y^x 4 = \rightarrow$ Answer: 10,000
Problem: $10^5 \rightarrow$ Type: $10 y^x 5 = \rightarrow$ Answer: $100,000$
Problem: $10^6 \rightarrow \text{Type: } 10 \mathbf{y}^{\mathbf{x}} 6 = \rightarrow \text{Answer: } 1,000,000$

Powers of Ten:

- The place value system is based off of the powers of ten
- The number of the exponent tells how many zeros are on the number

Zero Power:

• Any number to the zero power equals one

SOL 6.5 – Squares and Perfect Squares

Exponential Form	Word Form	Expanded Form	Standard Fr <mark>o</mark> m
1 ²	1 squared	1×1	1
2 ²	2 squared	2×2	4
3 ²	3 squared	3×3	9
$\frac{3^2}{4^2}$	4 squared	4×4	<mark>16</mark>
5 ²	5 squared	5×5	<mark>25</mark>
6 ²	6 squared	6×6	36
7 ²	7 squared	7×7	49
8 ²	8 squared	8×8	64
9 ²	9 squared	9×9	81
10 ²	10 squared	10×10	100
11 ²	11 squared	11×11	121
12 ²	12 squared	12×12	144
13 ²	13 squared	13×13	169
14 ²	14 squared	14×14	196
15 ²	15 squared	15×15	225
16 ²	16 squared	16×16	256
17 ²	17 squared	17×17	289
18 ²	18 squared	18×18	324
19 ²	19 squared	19×19	361
20 ²	20 squared	20×20	400

Perfect Squares
– Remember the stackems

SOL 6.5 Exponents and Perfect Squares

Exponential Form

Perfect Squares

perfect square

SOL 6.5 Exponents and Perfect Squares

Powers of Ten

Exponential	Meaning	Value
10 ⁴	10 · 10 · 10 · 10	10,000
10 ³	10 · 10 · 10	1000
10 ²	10 · 10	100
10 ¹	10	10
10 ⁰	1	1

Squaring a number and taking a square root are inverse operations.

SOL 6.5 Exponents and Perfect Squares

Essential Understandings:

What does exponential form represent? riplica (ommal What is the relationship between perfect squares and a geometric square? Bosi CO. re

Essential Knowledge & Skills:

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

- Recognize and describe patterns with exponents that are natural numbers, by using a calculator.
- Recognize and describe patterns of perfect squares_not to exceed 20², by using grid paper, square tiles, tables, and calculators.
- Recognize powers of ten by examining patterns in a place value chart: $10^4 = 10,000, 10^3 = 1000, 10^2 = 100, 10^1 = 10, 10^0 = 1.$