SOL 6.5 - Exponents, Squares, and Perfect Squares

6.5 The student will investigate and describe concepts of positive exponents and perfect squares.

Understanding the Standard:

- In exponential notation, the base is the number that is multiplied, and the exponent represents the number of times the base is used as a factor. $\ln 8^{3}, 8$ is the base and 3 is the exponent.
- A power of a number represents repeated multiplication of the number by itself (e.g., $8^{3}=8 \times 8 \times 8$ and is read " 8 to the third power").
- Any real number other than zero raised to the zero power is 1 . Zero to the zero power (0) is undefined.
- Perfect squares are the numbers that result from multiplying any whole number by itself (e.g., $36=6 \times 6=6^{2}$).
- Perfect squares can be represented geometrically as the areas of squares the length of whose sides are whole numbers (e.g., $1 \times 1,2 \times 2$, or 3×3). This can be modeled with grid paper, tiles, geoboards and virtual manipulatives.

SOL 6.5 - Exponents

The Meaning of Exponents:

- Where repeated addition is multiplication, repeated multiplication is the use of exponents
- The Base is the "Big number" which is the number to be repeated
- The Exponent is the "Floaty number" which tells how many times the Base is to be repeated.

Exponential Form	Word Form	Expanded Form	Standard Form
	2 to the fourth power	$2 \times 2 \times 2 \times 2$	

How to enter into the Calculator:

Problem: $3^{5} \rightarrow$ Type: $3 \mathbf{y}^{\mathbf{x}} 5=\rightarrow$ Answer: 243
Problem: $4^{7} \rightarrow$ Type: $4 y^{\mathbf{x}} 7=\rightarrow$ Answer: 16,384
Problem: $10^{2} \rightarrow$ Type: $10 \mathbf{y}^{\mathbf{x}} 2=\rightarrow$ Answer: 100
Problem: $10^{3} \rightarrow$ Type: $10 y^{\mathbf{x}} 3=\rightarrow$ Answer: 1,000
Problem: $10^{4} \rightarrow$ Type: 10 y $^{\mathrm{x}} 4=\rightarrow$ Answer: 10,000
Problem: $10^{5} \rightarrow$ Type: $10 y^{\mathbf{x}} 5=\rightarrow$ Answer: 100,000
Problem: $10^{6} \rightarrow$ Type: $10 \mathbf{y}^{\mathrm{x}} 6=\rightarrow$ Answer: 1,000,000

Powers of Ten:

- The place value system is based off of the powers of ten
- The number of the exponent tells how many zeros are on the number

Zero Power:

- Any number to the zero power equals one

SOL 6.5 - Squares and Perfect Squares

Exponential Form	Word Form	Expanded Form	Standard From
1^{2}	1 squared	1×1	1
2^{2}	2 squared	2×2	4
3^{2}	3 squared	3×3	9
4^{2}	4 squared	4×4	16
5^{2}	5 squared	5×5	25
6^{2}	6 squared	6×6	36
7^{2}	7 squared	7×7	49
8^{2}	8 squared	8×8	64
9^{2}	9 squared	9×9	81
10^{2}	10 squared	10×10	100
11^{2}	11 squared	11×11	121
12^{2}	12 squared	12×12	144
13^{2}	13 squared	13×13	169
14^{2}	14 squared	14×14	196
15^{2}	15 squared	15×15	225
16^{2}	16 squared	16×16	256
17^{2}	17 squared	17×17	289
18^{2}	18 squared	18×18	324
19^{2}	19 squared	19×19	361
20^{2}	20 squared	20×20	400

Vocabulary:

Exponential Form

Perfect Squares

$$
\begin{aligned}
& 0^{2}=0 \cdot 0=0 \\
& 1^{2}=1 \cdot 1=1 \\
& 2^{2}=2 \cdot 2=4 \\
& 3^{2}=3 \cdot 3=9 \\
& 4^{2}=4 \cdot 4=16 \\
& 5^{2}=5 \cdot 5=25
\end{aligned}
$$

$\sqrt{16}=\sqrt{4 \cdot 4}=4$
perfect square

Powers of Ten

Exponential	Meaning	Value
10^{4}	$10 \cdot 10 \cdot 10 \cdot 10$	10,000
10^{3}	$10 \cdot 10 \cdot 10$	1000
10^{2}	$10 \cdot 10$	100
10^{1}	10	10
$10^{\mathbf{0}}$	1	1

Square Root

radical symbol

$$
\begin{gathered}
\sqrt{36}=6 \\
\sqrt{36}=\sqrt{6 \cdot 6}=\sqrt{6^{2}}=6
\end{gathered}
$$

Squaring a number and taking a square root are inverse operations.

between $\sqrt{9}$ and $\sqrt{16}$

Essential Understandings:

What does exponential form represent? suchas: $5 \times 5 \times 5 \times 5 \times 5 \times 5=56$

What is the relationship between perfect squares and a geometric square?

Essential Knowledge \& Skills:

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

- Recognize and describe patterns with exponents that are natural numbers, by using a calculator.
- Recognize and describe patterns of perfect squares_not to exceed 20^{2}, by using grid paper, square tiles, tables, and calculators.
- Recognize powers of ten by examining patterns in a place value chart: $10^{4}=$ $10,000,10^{3}=1000,10^{2}=100,10^{1}=10,10^{0}=1$.

