SOL 6.5 – Exponents

The Meaning of Exponents

- Where repeated addition is multiplication, repeated multiplication is the use of exponents
- The **Base** is the "**Big number**" which is the number to be repeated
- The **Exponent** is the "Floaty number" which tells how many times the **Base** is to be repeated.

Exponential Form	Word Form	Expanded Form	Standard From
2 ⁴	2 to the fourth power	2×2×2×2	16

How to enter into the Calculator

Problem:	$3^5 \rightarrow \text{Type:} \ 3 \ \mathbf{y}^{\mathbf{x}} \ 5 \ = \rightarrow \text{Answer:} \ 243$
Problem:	$4^7 \rightarrow$ Type: 4 y^x 7 = \rightarrow Answer: 16,384
Problem:	$10^2 \rightarrow$ Type: 10 y ^x 2 = \rightarrow Answer: 100
Problem:	$10^3 \rightarrow$ Type: 10 y ^x 3 = \rightarrow Answer: 1,000
Problem:	$10^4 \rightarrow$ Type: 10 y ^x 4 = \rightarrow Answer: 10,000
Problem:	$10^5 \rightarrow$ Type: 10 y ^x 5 = \rightarrow Answer: 100,000
Problem:	$10^6 \rightarrow$ Type: 10 y^x 6 = \rightarrow Answer: 1,000,000

Powers of Ten

- The place value system is based off of the powers of ten
- The number of the exponent tells how many zeros are on the number

Zero Power

• Any number to the zero power equals one

SOL 6.5 – Squares and Perfect Squares

Exponential Form	Word Form	Expanded Form	Standard From
1 ²	1 squared	1×1	1
2 ²	2 squared	2x2	4
3 ²	3 squared	3x3	9
4 ²	4 squared	4×4	16
5 ²	5 squared	5×5	25
6 ²	6 squared	6×6	36
7 ²	7 squared	7x7	49
8 ²	8 squared	8×8	64
9 ²	9 squared	9×9	81
10 ²	10 squared	10×10	100
11 ²	11 squared	11×11	121
12 ²	12 squared	12×12	144
13 ²	13 squared	13×13	169
14 ²	14 squared	14×14	196
15 ²	15 squared	15×15	225
16 ²	16 squared	16×16	256
17 ²	17 squared	17×17	289
18 ²	18 squared	18×18	324
19 ²	19 squared	19×19	361
20 ²	20 squared	20×20	400

Perfect Squares
– Remember the stackems

SOL 6.5 Exponents and Perfect Squares